Nuprl Lemma : State1-state-class1
∀[Info,B,A:Type]. ∀[f:Id ⟶ A ⟶ B ⟶ B]. ∀[init:Id ⟶ B]. ∀[X:EClass(A)].
(State1(init;f;X) = state-class1(init;f;X) ∈ EClass(B))
Proof
Definitions occuring in Statement :
State1: State1(init;tr;X)
,
state-class1: state-class1(init;tr;X)
,
eclass: EClass(A[eo; e])
,
Id: Id
,
uall: ∀[x:A]. B[x]
,
function: x:A ⟶ B[x]
,
universe: Type
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
state-class1: state-class1(init;tr;X)
,
State1: State1(init;tr;X)
,
all: ∀x:A. B[x]
,
so_lambda: λ2x y.t[x; y]
,
subtype_rel: A ⊆r B
,
so_apply: x[s1;s2]
Latex:
\mforall{}[Info,B,A:Type]. \mforall{}[f:Id {}\mrightarrow{} A {}\mrightarrow{} B {}\mrightarrow{} B]. \mforall{}[init:Id {}\mrightarrow{} B]. \mforall{}[X:EClass(A)].
(State1(init;f;X) = state-class1(init;f;X))
Date html generated:
2016_05_17-AM-10_04_33
Last ObjectModification:
2015_12_29-PM-03_52_26
Theory : classrel!lemmas
Home
Index