Nuprl Lemma : lookup-list-map-empty-prop
∀[Key:Type]. ∀[deqKey:EqDecider(Key)]. ∀[key:Key]. (¬↑lookup-list-map-inDom(deqKey;key;lookup-list-map-empty()))
Proof
Definitions occuring in Statement :
lookup-list-map-empty: lookup-list-map-empty()
,
lookup-list-map-inDom: lookup-list-map-inDom(deqKey;key;m)
,
deq: EqDecider(T)
,
assert: ↑b
,
uall: ∀[x:A]. B[x]
,
not: ¬A
,
universe: Type
Definitions unfolded in proof :
lookup-list-map-empty: lookup-list-map-empty()
,
lookup-list-map-inDom: lookup-list-map-inDom(deqKey;key;m)
,
all: ∀x:A. B[x]
,
so_lambda: so_lambda(x,y,z.t[x; y; z])
,
member: t ∈ T
,
top: Top
,
so_apply: x[s1;s2;s3]
,
assert: ↑b
,
ifthenelse: if b then t else f fi
,
bfalse: ff
,
uall: ∀[x:A]. B[x]
,
not: ¬A
,
implies: P
⇒ Q
,
false: False
,
prop: ℙ
Latex:
\mforall{}[Key:Type]. \mforall{}[deqKey:EqDecider(Key)]. \mforall{}[key:Key].
(\mneg{}\muparrow{}lookup-list-map-inDom(deqKey;key;lookup-list-map-empty()))
Date html generated:
2016_05_17-PM-01_51_02
Last ObjectModification:
2015_12_28-PM-08_50_11
Theory : datatype-signatures
Home
Index