Nuprl Lemma : set-sig-set-squash
∀[Item:Type]. ∀[s:set-sig{i:l}(Item)]. (↓set-sig-set(s))
Proof
Definitions occuring in Statement :
set-sig-set: set-sig-set(s)
,
set-sig: set-sig{i:l}(Item)
,
uall: ∀[x:A]. B[x]
,
squash: ↓T
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
set-sig: set-sig{i:l}(Item)
,
record+: record+,
record-select: r.x
,
subtype_rel: A ⊆r B
,
eq_atom: x =a y
,
ifthenelse: if b then t else f fi
,
btrue: tt
,
implies: P
⇒ Q
,
guard: {T}
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
all: ∀x:A. B[x]
,
prop: ℙ
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
and: P ∧ Q
,
or: P ∨ Q
,
set-sig-set: set-sig-set(s)
,
squash: ↓T
Latex:
\mforall{}[Item:Type]. \mforall{}[s:set-sig\{i:l\}(Item)]. (\mdownarrow{}set-sig-set(s))
Date html generated:
2016_05_17-PM-01_44_11
Last ObjectModification:
2016_01_17-AM-11_37_43
Theory : datatype-signatures
Home
Index