Nuprl Lemma : cs-inning-committed_wf
∀[V:Type]. ∀[A:Id List]. ∀[W:{a:Id| (a ∈ A)} List List]. ∀[s:ConsensusState]. ∀[i:ℤ]. ∀[v:V].
(in state s, inning i has committed v ∈ ℙ)
Proof
Definitions occuring in Statement :
cs-inning-committed: in state s, inning i has committed v
,
consensus-state4: ConsensusState
,
Id: Id
,
l_member: (x ∈ l)
,
list: T List
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
member: t ∈ T
,
set: {x:A| B[x]}
,
int: ℤ
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
cs-inning-committed: in state s, inning i has committed v
,
prop: ℙ
,
so_lambda: λ2x.t[x]
,
and: P ∧ Q
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
so_apply: x[s]
Latex:
\mforall{}[V:Type]. \mforall{}[A:Id List]. \mforall{}[W:\{a:Id| (a \mmember{} A)\} List List]. \mforall{}[s:ConsensusState]. \mforall{}[i:\mBbbZ{}]. \mforall{}[v:V].
(in state s, inning i has committed v \mmember{} \mBbbP{})
Date html generated:
2016_05_16-AM-11_59_31
Last ObjectModification:
2015_12_29-PM-01_20_14
Theory : event-ordering
Home
Index