Nuprl Lemma : es-interface-or_wf
∀[Info,A,B:Type]. ∀[X:EClass(A)]. ∀[Y:EClass(B)]. ((X | Y) ∈ EClass(one_or_both(A;B)))
Proof
Definitions occuring in Statement :
es-interface-or: (X | Y)
,
eclass: EClass(A[eo; e])
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
universe: Type
,
one_or_both: one_or_both(A;B)
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
es-interface-or: (X | Y)
,
so_lambda: λ2x y.t[x; y]
,
subtype_rel: A ⊆r B
,
so_apply: x[s1;s2]
Latex:
\mforall{}[Info,A,B:Type]. \mforall{}[X:EClass(A)]. \mforall{}[Y:EClass(B)]. ((X | Y) \mmember{} EClass(one\_or\_both(A;B)))
Date html generated:
2016_05_16-PM-10_41_08
Last ObjectModification:
2015_12_29-AM-10_52_35
Theory : event-ordering
Home
Index