Nuprl Definition : es-propagation-rule-iff
A
⇐f
⇒ B@g ==
∃p:E(A) ⟶ (E(B) List)
((∀e1,e2:E(A). ((¬(e1 = e2 ∈ E))
⇒ l_disjoint(E(B);p e1;p e2)))
∧ (∀e:E(A). (∀e'∈p e.(e < e') ∧ (B(e') = (f loc(e) A(e)) ∈ T) ∧ (loc(e') ∈ g A(e))))
∧ (∀e:E(A). (∀x∈g A(e).(∃e'∈p e. loc(e') = x ∈ Id)))
∧ (∀e':E(B). ∃e:E(A). (e' ∈ p e)))
Definitions occuring in Statement :
es-E-interface: E(X)
,
eclass-val: X(e)
,
es-causl: (e < e')
,
es-loc: loc(e)
,
es-E: E
,
Id: Id
,
l_disjoint: l_disjoint(T;l1;l2)
,
l_exists: (∃x∈L. P[x])
,
l_all: (∀x∈L.P[x])
,
l_member: (x ∈ l)
,
list: T List
,
all: ∀x:A. B[x]
,
exists: ∃x:A. B[x]
,
not: ¬A
,
implies: P
⇒ Q
,
and: P ∧ Q
,
apply: f a
,
function: x:A ⟶ B[x]
,
equal: s = t ∈ T
FDL editor aliases :
es-propagation-rule-iff
Latex:
A \mLeftarrow{}{}f{}\mRightarrow{} B@g ==
\mexists{}p:E(A) {}\mrightarrow{} (E(B) List)
((\mforall{}e1,e2:E(A). ((\mneg{}(e1 = e2)) {}\mRightarrow{} l\_disjoint(E(B);p e1;p e2)))
\mwedge{} (\mforall{}e:E(A). (\mforall{}e'\mmember{}p e.(e < e') \mwedge{} (B(e') = (f loc(e) A(e))) \mwedge{} (loc(e') \mmember{} g A(e))))
\mwedge{} (\mforall{}e:E(A). (\mforall{}x\mmember{}g A(e).(\mexists{}e'\mmember{}p e. loc(e') = x)))
\mwedge{} (\mforall{}e':E(B). \mexists{}e:E(A). (e' \mmember{} p e)))
Date html generated:
2016_05_17-AM-06_48_51
Last ObjectModification:
2012_07_23-PM-11_37_25
Theory : event-ordering
Home
Index