Nuprl Lemma : fpf-compose_wf
∀[A:Type]. ∀[B,C:A ⟶ Type]. ∀[f:a:A fp-> B[a]]. ∀[g:⋂a:A. (B[a] ⟶ C[a])]. (g o f ∈ a:A fp-> C[a])
Proof
Definitions occuring in Statement :
fpf-compose: g o f
,
fpf: a:A fp-> B[a]
,
uall: ∀[x:A]. B[x]
,
so_apply: x[s]
,
member: t ∈ T
,
isect: ⋂x:A. B[x]
,
function: x:A ⟶ B[x]
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
fpf-compose: g o f
,
fpf: a:A fp-> B[a]
,
pi1: fst(t)
,
pi2: snd(t)
,
prop: ℙ
,
all: ∀x:A. B[x]
,
so_apply: x[s]
,
so_lambda: λ2x.t[x]
,
compose: f o g
,
subtype_rel: A ⊆r B
Latex:
\mforall{}[A:Type]. \mforall{}[B,C:A {}\mrightarrow{} Type]. \mforall{}[f:a:A fp-> B[a]]. \mforall{}[g:\mcap{}a:A. (B[a] {}\mrightarrow{} C[a])]. (g o f \mmember{} a:A fp-> C[a])
Date html generated:
2016_05_16-AM-11_26_52
Last ObjectModification:
2015_12_29-AM-09_26_05
Theory : event-ordering
Home
Index