Nuprl Lemma : fpf-domain-union-join
∀[A:Type]
∀f:a:A fp-> Top List. ∀g:a:A fp-> Top. ∀eq:EqDecider(A). ∀x:A. ∀R:Top.
((x ∈ fpf-domain(fpf-union-join(eq;R;f;g)))
⇐⇒ (x ∈ fpf-domain(f)) ∨ (x ∈ fpf-domain(g)))
Proof
Definitions occuring in Statement :
fpf-union-join: fpf-union-join(eq;R;f;g)
,
fpf-domain: fpf-domain(f)
,
fpf: a:A fp-> B[a]
,
l_member: (x ∈ l)
,
list: T List
,
deq: EqDecider(T)
,
uall: ∀[x:A]. B[x]
,
top: Top
,
all: ∀x:A. B[x]
,
iff: P
⇐⇒ Q
,
or: P ∨ Q
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
fpf: a:A fp-> B[a]
,
fpf-domain: fpf-domain(f)
,
fpf-union-join: fpf-union-join(eq;R;f;g)
,
pi1: fst(t)
,
fpf-dom: x ∈ dom(f)
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
implies: P
⇒ Q
,
or: P ∨ Q
,
member: t ∈ T
,
prop: ℙ
,
rev_implies: P
⇐ Q
,
decidable: Dec(P)
,
not: ¬A
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
false: False
Latex:
\mforall{}[A:Type]
\mforall{}f:a:A fp-> Top List. \mforall{}g:a:A fp-> Top. \mforall{}eq:EqDecider(A). \mforall{}x:A. \mforall{}R:Top.
((x \mmember{} fpf-domain(fpf-union-join(eq;R;f;g))) \mLeftarrow{}{}\mRightarrow{} (x \mmember{} fpf-domain(f)) \mvee{} (x \mmember{} fpf-domain(g)))
Date html generated:
2016_05_16-AM-11_14_04
Last ObjectModification:
2015_12_29-AM-09_20_57
Theory : event-ordering
Home
Index