Nuprl Lemma : fpf-single_wf
∀[A:𝕌{j}]. ∀[B:A ⟶ Type]. ∀[x:A]. ∀[v:B[x]]. (x : v ∈ x:A fp-> B[x])
Proof
Definitions occuring in Statement :
fpf-single: x : v
,
fpf: a:A fp-> B[a]
,
uall: ∀[x:A]. B[x]
,
so_apply: x[s]
,
member: t ∈ T
,
function: x:A ⟶ B[x]
,
universe: Type
Definitions unfolded in proof :
fpf-single: x : v
,
fpf: a:A fp-> B[a]
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
all: ∀x:A. B[x]
,
prop: ℙ
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
implies: P
⇒ Q
,
subtype_rel: A ⊆r B
,
so_apply: x[s]
Latex:
\mforall{}[A:\mBbbU{}\{j\}]. \mforall{}[B:A {}\mrightarrow{} Type]. \mforall{}[x:A]. \mforall{}[v:B[x]]. (x : v \mmember{} x:A fp-> B[x])
Date html generated:
2016_05_16-AM-11_15_52
Last ObjectModification:
2015_12_29-AM-09_27_54
Theory : event-ordering
Home
Index