Nuprl Lemma : global-order-compat-squash-invariant
∀[Info:Type]. ∀[P:Id ⟶ Info List+ ⟶ ℙ]. ∀[R:Id ⟶ Id ⟶ Info List+ ⟶ Info List+ ⟶ ℙ].
∀L1,L2:(Id × Info) List.
(L1 || L2
⇒ (squash-causal-invariant(i,L.P[i;L];a,b,L1,L2.R[a;b;L1;L2]) global-eo(L1))
⇒ (squash-causal-invariant(i,L.P[i;L];a,b,L1,L2.R[a;b;L1;L2]) global-eo(L2))
⇒ (∃L:(Id × Info) List
((squash-causal-invariant(i,L.P[i;L];a,b,L1,L2.R[a;b;L1;L2]) global-eo(L))
∧ (∀L':(Id × Info) List. (L1 || L'
⇒ L2 || L'
⇒ L || L'))
∧ (∃f:E ⟶ E. es-local-embedding(Info;global-eo(L1);global-eo(L);f))
∧ (∃g:E ⟶ E. es-local-embedding(Info;global-eo(L2);global-eo(L);g)))))
Proof
Definitions occuring in Statement :
global-order-compat: L1 || L2
,
global-eo: global-eo(L)
,
squash-causal-invariant: squash-causal-invariant(i,L.P[i; L];a,b,L1,L2.R[a; b; L1; L2])
,
es-local-embedding: es-local-embedding(Info;eo1;eo2;f)
,
es-E: E
,
Id: Id
,
listp: A List+
,
list: T List
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
so_apply: x[s1;s2;s3;s4]
,
so_apply: x[s1;s2]
,
all: ∀x:A. B[x]
,
exists: ∃x:A. B[x]
,
implies: P
⇒ Q
,
and: P ∧ Q
,
apply: f a
,
function: x:A ⟶ B[x]
,
product: x:A × B[x]
,
universe: Type
Definitions unfolded in proof :
so_apply: x[s]
,
so_lambda: λ2x.t[x]
,
subtype_rel: A ⊆r B
,
prop: ℙ
,
so_apply: x[s1;s2]
,
so_lambda: λ2x y.t[x; y]
,
so_apply: x[s1;s2;s3;s4]
,
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w])
,
cand: A c∧ B
,
and: P ∧ Q
,
exists: ∃x:A. B[x]
,
member: t ∈ T
,
implies: P
⇒ Q
,
all: ∀x:A. B[x]
,
uall: ∀[x:A]. B[x]
,
es-weak-joint-embedding: es-weak-joint-embedding(Info;eo1;eo2;eo;f;g)
,
es-embedding: (f embeds eo1 into eo2)
Latex:
\mforall{}[Info:Type]. \mforall{}[P:Id {}\mrightarrow{} Info List\msupplus{} {}\mrightarrow{} \mBbbP{}]. \mforall{}[R:Id {}\mrightarrow{} Id {}\mrightarrow{} Info List\msupplus{} {}\mrightarrow{} Info List\msupplus{} {}\mrightarrow{} \mBbbP{}].
\mforall{}L1,L2:(Id \mtimes{} Info) List.
(L1 || L2
{}\mRightarrow{} (squash-causal-invariant(i,L.P[i;L];a,b,L1,L2.R[a;b;L1;L2]) global-eo(L1))
{}\mRightarrow{} (squash-causal-invariant(i,L.P[i;L];a,b,L1,L2.R[a;b;L1;L2]) global-eo(L2))
{}\mRightarrow{} (\mexists{}L:(Id \mtimes{} Info) List
((squash-causal-invariant(i,L.P[i;L];a,b,L1,L2.R[a;b;L1;L2]) global-eo(L))
\mwedge{} (\mforall{}L':(Id \mtimes{} Info) List. (L1 || L' {}\mRightarrow{} L2 || L' {}\mRightarrow{} L || L'))
\mwedge{} (\mexists{}f:E {}\mrightarrow{} E. es-local-embedding(Info;global-eo(L1);global-eo(L);f))
\mwedge{} (\mexists{}g:E {}\mrightarrow{} E. es-local-embedding(Info;global-eo(L2);global-eo(L);g)))))
Date html generated:
2016_05_17-AM-08_37_54
Last ObjectModification:
2015_12_28-PM-10_50_45
Theory : event-ordering
Home
Index