Nuprl Lemma : joint-embedding-preserves-causal-invariant
∀[Info:Type]. ∀[R:Id ⟶ Id ⟶ Info List+ ⟶ Info List+ ⟶ ℙ]. ∀[P:Id ⟶ Info List+ ⟶ ℙ].
∀eo1,eo2,eo:EO+(Info). ∀f:E ⟶ E. ∀g:E ⟶ E.
(es-joint-embedding(Info;eo1;eo2;eo;f;g)
⇒ (causal-invariant(i,L.P[i;L];a,b,L1,L2.R[a;b;L1;L2]) eo1)
⇒ (causal-invariant(i,L.P[i;L];a,b,L1,L2.R[a;b;L1;L2]) eo2)
⇒ (causal-invariant(i,L.P[i;L];a,b,L1,L2.R[a;b;L1;L2]) eo))
Proof
Definitions occuring in Statement :
causal-invariant: causal-invariant(i,L.P[i; L];a,b,L1,L2.R[a; b; L1; L2])
,
es-joint-embedding: es-joint-embedding(Info;eo1;eo2;eo;f;g)
,
event-ordering+: EO+(Info)
,
es-E: E
,
Id: Id
,
listp: A List+
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
so_apply: x[s1;s2;s3;s4]
,
so_apply: x[s1;s2]
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
apply: f a
,
function: x:A ⟶ B[x]
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
member: t ∈ T
,
causal-invariant: causal-invariant(i,L.P[i; L];a,b,L1,L2.R[a; b; L1; L2])
,
es-joint-embedding: es-joint-embedding(Info;eo1;eo2;eo;f;g)
,
and: P ∧ Q
,
or: P ∨ Q
,
exists: ∃x:A. B[x]
,
prop: ℙ
,
so_lambda: λ2x y.t[x; y]
,
so_apply: x[s1;s2]
,
subtype_rel: A ⊆r B
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
es-embedding: (f embeds eo1 into eo2)
,
cand: A c∧ B
,
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w])
,
so_apply: x[s1;s2;s3;s4]
,
guard: {T}
,
squash: ↓T
,
true: True
Latex:
\mforall{}[Info:Type]. \mforall{}[R:Id {}\mrightarrow{} Id {}\mrightarrow{} Info List\msupplus{} {}\mrightarrow{} Info List\msupplus{} {}\mrightarrow{} \mBbbP{}]. \mforall{}[P:Id {}\mrightarrow{} Info List\msupplus{} {}\mrightarrow{} \mBbbP{}].
\mforall{}eo1,eo2,eo:EO+(Info). \mforall{}f:E {}\mrightarrow{} E. \mforall{}g:E {}\mrightarrow{} E.
(es-joint-embedding(Info;eo1;eo2;eo;f;g)
{}\mRightarrow{} (causal-invariant(i,L.P[i;L];a,b,L1,L2.R[a;b;L1;L2]) eo1)
{}\mRightarrow{} (causal-invariant(i,L.P[i;L];a,b,L1,L2.R[a;b;L1;L2]) eo2)
{}\mRightarrow{} (causal-invariant(i,L.P[i;L];a,b,L1,L2.R[a;b;L1;L2]) eo))
Date html generated:
2016_05_16-PM-01_25_14
Last ObjectModification:
2016_01_17-PM-07_53_08
Theory : event-ordering
Home
Index