Nuprl Lemma : mbind-class_wf
∀[Info,A,B:Type]. ∀[X:EClass(A)]. ∀[Y:A ⟶ EClass(B)]. (X >>= Y ∈ EClass(B))
Proof
Definitions occuring in Statement :
mbind-class: X >>= Y
,
eclass: EClass(A[eo; e])
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
function: x:A ⟶ B[x]
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
mbind-class: X >>= Y
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
so_lambda: λ2x y.t[x; y]
,
subtype_rel: A ⊆r B
,
so_apply: x[s1;s2]
Latex:
\mforall{}[Info,A,B:Type]. \mforall{}[X:EClass(A)]. \mforall{}[Y:A {}\mrightarrow{} EClass(B)]. (X >>= Y \mmember{} EClass(B))
Date html generated:
2016_05_17-AM-00_22_03
Last ObjectModification:
2015_12_29-AM-00_46_56
Theory : event-ordering
Home
Index