Nuprl Lemma : memory-class1_wf
∀[Info,A,B:Type]. ∀[init:Id ⟶ B]. ∀[f:Id ⟶ A ⟶ B ⟶ B]. ∀[X:EClass(A)].
(memory-class1(initially init
applying f
on X) ∈ EClass(B))
Proof
Definitions occuring in Statement :
memory-class1: memory-class1,
eclass: EClass(A[eo; e])
,
Id: Id
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
function: x:A ⟶ B[x]
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
memory-class1: memory-class1,
all: ∀x:A. B[x]
,
so_lambda: λ2x y.t[x; y]
,
subtype_rel: A ⊆r B
,
so_apply: x[s1;s2]
Latex:
\mforall{}[Info,A,B:Type]. \mforall{}[init:Id {}\mrightarrow{} B]. \mforall{}[f:Id {}\mrightarrow{} A {}\mrightarrow{} B {}\mrightarrow{} B]. \mforall{}[X:EClass(A)].
(memory-class1(initially init
applying f
on X) \mmember{} EClass(B))
Date html generated:
2016_05_16-PM-11_45_21
Last ObjectModification:
2015_12_29-AM-10_03_33
Theory : event-ordering
Home
Index