Nuprl Lemma : normal-ds-single
∀x:Id. ∀[T:Type]. (Normal(T)
⇒ Normal(x : T))
Proof
Definitions occuring in Statement :
normal-ds: Normal(ds)
,
normal-type: Normal(T)
,
fpf-single: x : v
,
Id: Id
,
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
universe: Type
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
uall: ∀[x:A]. B[x]
,
implies: P
⇒ Q
,
normal-ds: Normal(ds)
,
fpf-all: ∀x∈dom(f). v=f(x)
⇒ P[x; v]
,
fpf-ap: f(x)
,
pi2: snd(t)
,
fpf-single: x : v
,
normal-type: Normal(T)
,
member: t ∈ T
,
prop: ℙ
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
subtype_rel: A ⊆r B
,
top: Top
Latex:
\mforall{}x:Id. \mforall{}[T:Type]. (Normal(T) {}\mRightarrow{} Normal(x : T))
Date html generated:
2016_05_16-AM-11_40_51
Last ObjectModification:
2015_12_29-AM-09_34_22
Theory : event-ordering
Home
Index