Nuprl Lemma : three-intersecting-wait-set
∀t:ℕ. ∀A:Id List.
({a:Id| (a ∈ A)} ~ ℕ(3 * t) + 1
⇒ (∀W:{a:Id| (a ∈ A)} List List
((∀ws:{a:Id| (a ∈ A)} List. ((ws ∈ W)
⇐⇒ (||ws|| = ((2 * t) + 1) ∈ ℤ) ∧ no_repeats({a:Id| (a ∈ A)} ;ws)))
⇒ three-intersection(A;W))))
Proof
Definitions occuring in Statement :
three-intersection: three-intersection(A;W)
,
equipollent: A ~ B
,
Id: Id
,
no_repeats: no_repeats(T;l)
,
l_member: (x ∈ l)
,
length: ||as||
,
list: T List
,
int_seg: {i..j-}
,
nat: ℕ
,
all: ∀x:A. B[x]
,
iff: P
⇐⇒ Q
,
implies: P
⇒ Q
,
and: P ∧ Q
,
set: {x:A| B[x]}
,
multiply: n * m
,
add: n + m
,
natural_number: $n
,
int: ℤ
,
equal: s = t ∈ T
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
member: t ∈ T
,
nat: ℕ
,
le: A ≤ B
,
and: P ∧ Q
,
less_than': less_than'(a;b)
,
false: False
,
not: ¬A
,
prop: ℙ
,
uall: ∀[x:A]. B[x]
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
three-intersection: three-intersection(A;W)
,
n-intersecting: n-intersecting(A;T;n)
,
subtract: n - m
,
cand: A c∧ B
,
combination: Combination(n;T)
,
length: ||as||
,
list_ind: list_ind,
cons: [a / b]
,
nil: []
,
it: ⋅
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
exists: ∃x:A. B[x]
,
guard: {T}
Latex:
\mforall{}t:\mBbbN{}. \mforall{}A:Id List.
(\{a:Id| (a \mmember{} A)\} \msim{} \mBbbN{}(3 * t) + 1
{}\mRightarrow{} (\mforall{}W:\{a:Id| (a \mmember{} A)\} List List
((\mforall{}ws:\{a:Id| (a \mmember{} A)\} List
((ws \mmember{} W) \mLeftarrow{}{}\mRightarrow{} (||ws|| = ((2 * t) + 1)) \mwedge{} no\_repeats(\{a:Id| (a \mmember{} A)\} ;ws)))
{}\mRightarrow{} three-intersection(A;W))))
Date html generated:
2016_05_16-PM-00_01_36
Last ObjectModification:
2015_12_29-PM-01_23_32
Theory : event-ordering
Home
Index