Nuprl Lemma : hdf-ap-invariant2

[A,B:Type]. ∀[Q:bag(B) ⟶ ℙ].
  (Q[{}]  (∀b:bag(B). SqStable(Q[b]))  (∀X:{X:hdataflow(A;B)| hdf-invariant(A;b.Q[b];X)} . ∀a:A.  Q[snd(X(a))]))


Proof




Definitions occuring in Statement :  hdf-invariant: hdf-invariant(A;b.Q[b];X) hdf-ap: X(a) hdataflow: hdataflow(A;B) sq_stable: SqStable(P) uall: [x:A]. B[x] prop: so_apply: x[s] pi2: snd(t) all: x:A. B[x] implies:  Q set: {x:A| B[x]}  function: x:A ⟶ B[x] universe: Type empty-bag: {} bag: bag(T)
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q all: x:A. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] sq_stable: SqStable(P) squash: T prop: hdf-invariant: hdf-invariant(A;b.Q[b];X) top: Top subtype_rel: A ⊆B ext-eq: A ≡ B and: P ∧ Q hdf-ap: X(a) pi2: snd(t)

Latex:
\mforall{}[A,B:Type].  \mforall{}[Q:bag(B)  {}\mrightarrow{}  \mBbbP{}].
    (Q[\{\}]
    {}\mRightarrow{}  (\mforall{}b:bag(B).  SqStable(Q[b]))
    {}\mRightarrow{}  (\mforall{}X:\{X:hdataflow(A;B)|  hdf-invariant(A;b.Q[b];X)\}  .  \mforall{}a:A.    Q[snd(X(a))]))



Date html generated: 2016_05_16-AM-10_38_50
Last ObjectModification: 2016_01_17-AM-11_12_52

Theory : halting!dataflow


Home Index