Nuprl Lemma : hdf-base-ap-fst
∀[A,B:Type]. ∀[F:A ⟶ bag(B)]. ∀[a:A].  ((fst(hdf-base(m.F[m])(a))) = hdf-base(m.F[m]) ∈ hdataflow(A;B))
Proof
Definitions occuring in Statement : 
hdf-base: hdf-base(m.F[m])
, 
hdf-ap: X(a)
, 
hdataflow: hdataflow(A;B)
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
pi1: fst(t)
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
, 
bag: bag(T)
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
pi1: fst(t)
, 
hdf-ap: X(a)
, 
hdf-base: hdf-base(m.F[m])
, 
mk-hdf: mk-hdf(s,m.G[s; m];st.H[st];s0)
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
hdf-run: hdf-run(P)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Latex:
\mforall{}[A,B:Type].  \mforall{}[F:A  {}\mrightarrow{}  bag(B)].  \mforall{}[a:A].    ((fst(hdf-base(m.F[m])(a)))  =  hdf-base(m.F[m]))
Date html generated:
2016_05_16-AM-10_39_04
Last ObjectModification:
2015_12_28-PM-07_44_19
Theory : halting!dataflow
Home
Index