Nuprl Lemma : hdf-base-ap-fst

[A,B:Type]. ∀[F:A ⟶ bag(B)]. ∀[a:A].  ((fst(hdf-base(m.F[m])(a))) hdf-base(m.F[m]) ∈ hdataflow(A;B))


Proof




Definitions occuring in Statement :  hdf-base: hdf-base(m.F[m]) hdf-ap: X(a) hdataflow: hdataflow(A;B) uall: [x:A]. B[x] so_apply: x[s] pi1: fst(t) function: x:A ⟶ B[x] universe: Type equal: t ∈ T bag: bag(T)
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T pi1: fst(t) hdf-ap: X(a) hdf-base: hdf-base(m.F[m]) mk-hdf: mk-hdf(s,m.G[s; m];st.H[st];s0) ifthenelse: if then else fi  bfalse: ff hdf-run: hdf-run(P) so_lambda: λ2x.t[x] so_apply: x[s]

Latex:
\mforall{}[A,B:Type].  \mforall{}[F:A  {}\mrightarrow{}  bag(B)].  \mforall{}[a:A].    ((fst(hdf-base(m.F[m])(a)))  =  hdf-base(m.F[m]))



Date html generated: 2016_05_16-AM-10_39_04
Last ObjectModification: 2015_12_28-PM-07_44_19

Theory : halting!dataflow


Home Index