Nuprl Lemma : hdf-base-ap

[A,B:Type]. ∀[F:A ⟶ bag(B)]. ∀[a:A].  (hdf-base(m.F[m])(a) = <hdf-base(m.F[m]), F[a]> ∈ (hdataflow(A;B) × bag(B)))


Proof




Definitions occuring in Statement :  hdf-base: hdf-base(m.F[m]) hdf-ap: X(a) hdataflow: hdataflow(A;B) uall: [x:A]. B[x] so_apply: x[s] function: x:A ⟶ B[x] pair: <a, b> product: x:A × B[x] universe: Type equal: t ∈ T bag: bag(T)
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T hdf-base: hdf-base(m.F[m]) mk-hdf: mk-hdf(s,m.G[s; m];st.H[st];s0) ifthenelse: if then else fi  bfalse: ff top: Top so_lambda: λ2x.t[x] so_apply: x[s]

Latex:
\mforall{}[A,B:Type].  \mforall{}[F:A  {}\mrightarrow{}  bag(B)].  \mforall{}[a:A].    (hdf-base(m.F[m])(a)  =  <hdf-base(m.F[m]),  F[a]>)



Date html generated: 2016_05_16-AM-10_39_02
Last ObjectModification: 2015_12_28-PM-07_44_21

Theory : halting!dataflow


Home Index