Nuprl Lemma : hdf-base_wf
∀[A,B:Type]. ∀[F:A ⟶ bag(B)].  (hdf-base(m.F[m]) ∈ hdataflow(A;B))
Proof
Definitions occuring in Statement : 
hdf-base: hdf-base(m.F[m])
, 
hdataflow: hdataflow(A;B)
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
bag: bag(T)
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
hdf-base: hdf-base(m.F[m])
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
Latex:
\mforall{}[A,B:Type].  \mforall{}[F:A  {}\mrightarrow{}  bag(B)].    (hdf-base(m.F[m])  \mmember{}  hdataflow(A;B))
Date html generated:
2016_05_16-AM-10_39_00
Last ObjectModification:
2015_12_28-PM-07_44_23
Theory : halting!dataflow
Home
Index