Nuprl Lemma : hdf-base_wf

[A,B:Type]. ∀[F:A ⟶ bag(B)].  (hdf-base(m.F[m]) ∈ hdataflow(A;B))


Proof




Definitions occuring in Statement :  hdf-base: hdf-base(m.F[m]) hdataflow: hdataflow(A;B) uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] universe: Type bag: bag(T)
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T hdf-base: hdf-base(m.F[m]) so_apply: x[s] so_lambda: λ2x.t[x] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2]

Latex:
\mforall{}[A,B:Type].  \mforall{}[F:A  {}\mrightarrow{}  bag(B)].    (hdf-base(m.F[m])  \mmember{}  hdataflow(A;B))



Date html generated: 2016_05_16-AM-10_39_00
Last ObjectModification: 2015_12_28-PM-07_44_23

Theory : halting!dataflow


Home Index