Nuprl Lemma : hdf-halt-compose2
∀[X:Top]. (hdf-halt() o X ~ hdf-halt())
Proof
Definitions occuring in Statement : 
hdf-compose2: X o Y
, 
hdf-halt: hdf-halt()
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
hdf-compose2: X o Y
, 
mk-hdf: mk-hdf(s,m.G[s; m];st.H[st];s0)
, 
all: ∀x:A. B[x]
, 
top: Top
, 
btrue: tt
, 
bor: p ∨bq
, 
ifthenelse: if b then t else f fi 
, 
callbyvalueall: callbyvalueall, 
evalall: evalall(t)
, 
bag-combine: ⋃x∈bs.f[x]
, 
bag-union: bag-union(bbs)
, 
concat: concat(ll)
, 
reduce: reduce(f;k;as)
, 
list_ind: list_ind, 
bag-map: bag-map(f;bs)
, 
map: map(f;as)
, 
empty-bag: {}
, 
nil: []
, 
it: ⋅
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Latex:
\mforall{}[X:Top].  (hdf-halt()  o  X  \msim{}  hdf-halt())
Date html generated:
2016_05_16-AM-10_39_51
Last ObjectModification:
2015_12_28-PM-07_43_56
Theory : halting!dataflow
Home
Index