Nuprl Lemma : hdf-halted_wf

[A,B:Type]. ∀[P:hdataflow(A;B)].  (hdf-halted(P) ∈ 𝔹)


Proof




Definitions occuring in Statement :  hdf-halted: hdf-halted(P) hdataflow: hdataflow(A;B) bool: 𝔹 uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T hdf-halted: hdf-halted(P) ext-eq: A ≡ B and: P ∧ Q subtype_rel: A ⊆B all: x:A. B[x] implies:  Q

Latex:
\mforall{}[A,B:Type].  \mforall{}[P:hdataflow(A;B)].    (hdf-halted(P)  \mmember{}  \mBbbB{})



Date html generated: 2016_05_16-AM-10_37_45
Last ObjectModification: 2015_12_28-PM-07_45_29

Theory : halting!dataflow


Home Index