Nuprl Lemma : hdf-invariant_wf

[A,B:Type]. ∀[Q:bag(B) ⟶ ℙ]. ∀[X:hdataflow(A;B)].  (hdf-invariant(A;b.Q[b];X) ∈ ℙ)


Proof




Definitions occuring in Statement :  hdf-invariant: hdf-invariant(A;b.Q[b];X) hdataflow: hdataflow(A;B) uall: [x:A]. B[x] prop: so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] universe: Type bag: bag(T)
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T hdf-invariant: hdf-invariant(A;b.Q[b];X) so_lambda: λ2x.t[x] all: x:A. B[x] implies:  Q subtype_rel: A ⊆B ext-eq: A ≡ B and: P ∧ Q so_apply: x[s] prop:

Latex:
\mforall{}[A,B:Type].  \mforall{}[Q:bag(B)  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[X:hdataflow(A;B)].    (hdf-invariant(A;b.Q[b];X)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_16-AM-10_38_45
Last ObjectModification: 2015_12_28-PM-07_44_26

Theory : halting!dataflow


Home Index