Nuprl Lemma : hdf-once_wf
∀[A,B:Type]. ∀[X:hdataflow(A;B)].  (hdf-once(X) ∈ hdataflow(A;B))
Proof
Definitions occuring in Statement : 
hdf-once: hdf-once(X)
, 
hdataflow: hdataflow(A;B)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
hdf-once: hdf-once(X)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
so_lambda: λ2x y.t[x; y]
, 
all: ∀x:A. B[x]
, 
so_apply: x[s1;s2]
Latex:
\mforall{}[A,B:Type].  \mforall{}[X:hdataflow(A;B)].    (hdf-once(X)  \mmember{}  hdataflow(A;B))
Date html generated:
2016_05_16-AM-10_40_56
Last ObjectModification:
2015_12_28-PM-07_43_18
Theory : halting!dataflow
Home
Index