Nuprl Lemma : hdf-out_wf
∀[A,B:Type]. ∀[P:hdataflow(A;B)]. ∀[x:A].  (hdf-out(P;x) ∈ bag(B))
Proof
Definitions occuring in Statement : 
hdf-out: hdf-out(P;x)
, 
hdataflow: hdataflow(A;B)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
, 
bag: bag(T)
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
hdf-out: hdf-out(P;x)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Latex:
\mforall{}[A,B:Type].  \mforall{}[P:hdataflow(A;B)].  \mforall{}[x:A].    (hdf-out(P;x)  \mmember{}  bag(B))
Date html generated:
2016_05_16-AM-10_38_16
Last ObjectModification:
2015_12_28-PM-07_44_56
Theory : halting!dataflow
Home
Index