Nuprl Lemma : hdf-single-val-step_wf

[A,B:Type]. ∀[X:hdataflow(A;B)]. ∀[P:ℙ].  (hdf-single-val-step(P;X;A;B) ∈ ℙ)


Proof




Definitions occuring in Statement :  hdf-single-val-step: hdf-single-val-step(P;X;A;B) hdataflow: hdataflow(A;B) uall: [x:A]. B[x] prop: member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T hdf-single-val-step: hdf-single-val-step(P;X;A;B) subtype_rel: A ⊆B ext-eq: A ≡ B and: P ∧ Q all: x:A. B[x] implies:  Q so_lambda: λ2x.t[x] so_apply: x[s] prop:

Latex:
\mforall{}[A,B:Type].  \mforall{}[X:hdataflow(A;B)].  \mforall{}[P:\mBbbP{}].    (hdf-single-val-step(P;X;A;B)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_16-AM-10_40_21
Last ObjectModification: 2015_12_28-PM-07_43_49

Theory : halting!dataflow


Home Index