Nuprl Lemma : hdf-single-valued_wf

[A,B:Type]. ∀[X:hdataflow(A;B)].  (hdf-single-valued(X;A;B) ∈ ℙ)


Proof




Definitions occuring in Statement :  hdf-single-valued: hdf-single-valued(X;A;B) hdataflow: hdataflow(A;B) uall: [x:A]. B[x] prop: member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T hdf-single-valued: hdf-single-valued(X;A;B) so_lambda: λ2x.t[x] all: x:A. B[x] implies:  Q subtype_rel: A ⊆B ext-eq: A ≡ B and: P ∧ Q so_apply: x[s]

Latex:
\mforall{}[A,B:Type].  \mforall{}[X:hdataflow(A;B)].    (hdf-single-valued(X;A;B)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_16-AM-10_40_25
Last ObjectModification: 2015_12_28-PM-07_43_38

Theory : halting!dataflow


Home Index