Nuprl Lemma : bool-tt-or-ff
∀b:𝔹. (b = tt ∨ b = ff)
Proof
Definitions occuring in Statement : 
bfalse: ff
, 
btrue: tt
, 
bool: 𝔹
, 
all: ∀x:A. B[x]
, 
or: P ∨ Q
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
Latex:
\mforall{}b:\mBbbB{}.  (b  =  tt  \mvee{}  b  =  ff)
Date html generated:
2016_05_16-AM-10_34_37
Last ObjectModification:
2015_12_28-PM-09_13_58
Theory : new!event-ordering
Home
Index