Nuprl Lemma : causale-order-preserving_wf

[es:EO]. ∀[P:E ⟶ ℙ]. ∀[f:{e:E| P[e]}  ⟶ E].  (e.f[e] is c≤ preserving on e.P[e] ∈ ℙ)


Proof




Definitions occuring in Statement :  causale-order-preserving: a.f[a] is c≤ preserving on e.P[e] es-E: E event_ordering: EO uall: [x:A]. B[x] prop: so_apply: x[s] member: t ∈ T set: {x:A| B[x]}  function: x:A ⟶ B[x]
Definitions unfolded in proof :  causale-order-preserving: a.f[a] is c≤ preserving on e.P[e] uall: [x:A]. B[x] member: t ∈ T so_apply: x[s] subtype_rel: A ⊆B so_lambda: λ2x.t[x] all: x:A. B[x] implies:  Q prop:

Latex:
\mforall{}[es:EO].  \mforall{}[P:E  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[f:\{e:E|  P[e]\}    {}\mrightarrow{}  E].    (e.f[e]  is  c\mleq{}  preserving  on  e.P[e]  \mmember{}  \mBbbP{})



Date html generated: 2016_05_16-AM-10_26_02
Last ObjectModification: 2015_12_28-PM-09_18_58

Theory : new!event-ordering


Home Index