Nuprl Lemma : conditional_wf

[T,V:Type]. ∀[A:T ⟶ ℙ]. ∀[dcd_A:t:T ⟶ Dec(A t)]. ∀[f:{t:T| t}  ⟶ V]. ∀[g:{t:T| ¬(A t)}  ⟶ V].
  ([A? g] ∈ T ⟶ V)


Proof




Definitions occuring in Statement :  conditional: [P? g] decidable: Dec(P) uall: [x:A]. B[x] prop: not: ¬A member: t ∈ T set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T conditional: [P? g] branch: if p:P then A[p] else fi  all: x:A. B[x] implies:  Q decidable: Dec(P) or: P ∨ Q subtype_rel: A ⊆B prop:

Latex:
\mforall{}[T,V:Type].  \mforall{}[A:T  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[dcd$_{A}$:t:T  {}\mrightarrow{}  Dec(A  t)].  \mforall{}[f:\{t:T|  A  t\}    {}\mrightarrow{}  V].  \mforall{}\000C[g:\{t:T|  \mneg{}(A  t)\}    {}\mrightarrow{}  V].
    ([A?  f  :  g]  \mmember{}  T  {}\mrightarrow{}  V)



Date html generated: 2016_05_16-AM-10_15_06
Last ObjectModification: 2015_12_28-PM-09_24_20

Theory : new!event-ordering


Home Index