Nuprl Lemma : decidable__ex_unit
∀[P:Unit ⟶ ℙ]. (Dec(P[⋅]) 
⇒ Dec(∃x:Unit. P[x]))
Proof
Definitions occuring in Statement : 
decidable: Dec(P)
, 
it: ⋅
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
unit: Unit
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
prop: ℙ
, 
unit: Unit
, 
it: ⋅
Latex:
\mforall{}[P:Unit  {}\mrightarrow{}  \mBbbP{}].  (Dec(P[\mcdot{}])  {}\mRightarrow{}  Dec(\mexists{}x:Unit.  P[x]))
Date html generated:
2016_05_16-AM-10_24_00
Last ObjectModification:
2015_12_28-PM-09_20_40
Theory : new!event-ordering
Home
Index