Nuprl Lemma : es-pplus_functionality_wrt_iff

es:EO. ∀e1:E. ∀e2:{e:E| loc(e) loc(e1) ∈ Id} .
  ∀[p,q:{e:E| loc(e) loc(e1) ∈ Id}  ⟶ {e:E| loc(e) loc(e1) ∈ Id}  ⟶ ℙ].
    ((∀a,b:{e:E| loc(e) loc(e1) ∈ Id} .  ((a ∈ [e1, e2])  (b ∈ [e1, e2])  (p[a;b] ⇐⇒ q[a;b])))
     ([e1,e2]~([a,b].p[a;b])+ ⇐⇒ [e1,e2]~([a,b].q[a;b])+))


Proof




Definitions occuring in Statement :  es-pplus: [e1,e2]~([a,b].p[a; b])+ es-interval: [e, e'] es-loc: loc(e) es-E: E event_ordering: EO Id: Id l_member: (x ∈ l) uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] iff: ⇐⇒ Q implies:  Q set: {x:A| B[x]}  function: x:A ⟶ B[x] equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] es-pplus: [e1,e2]~([a,b].p[a; b])+ implies:  Q prop: so_lambda: λ2x.t[x] so_apply: x[s1;s2] iff: ⇐⇒ Q rev_implies:  Q and: P ∧ Q so_apply: x[s]

Latex:
\mforall{}es:EO.  \mforall{}e1:E.  \mforall{}e2:\{e:E|  loc(e)  =  loc(e1)\}  .
    \mforall{}[p,q:\{e:E|  loc(e)  =  loc(e1)\}    {}\mrightarrow{}  \{e:E|  loc(e)  =  loc(e1)\}    {}\mrightarrow{}  \mBbbP{}].
        ((\mforall{}a,b:\{e:E|  loc(e)  =  loc(e1)\}  .    ((a  \mmember{}  [e1,  e2])  {}\mRightarrow{}  (b  \mmember{}  [e1,  e2])  {}\mRightarrow{}  (p[a;b]  \mLeftarrow{}{}\mRightarrow{}  q[a;b])))
        {}\mRightarrow{}  ([e1,e2]\msim{}([a,b].p[a;b])+  \mLeftarrow{}{}\mRightarrow{}  [e1,e2]\msim{}([a,b].q[a;b])+))



Date html generated: 2016_05_16-AM-09_57_23
Last ObjectModification: 2015_12_28-PM-09_30_58

Theory : new!event-ordering


Home Index