Nuprl Lemma : existse-at_wf
∀[es:EO]. ∀[i:Id]. ∀[P:{e:E| loc(e) = i ∈ Id} ⟶ ℙ]. (∃e@i.P[e] ∈ ℙ)
Proof
Definitions occuring in Statement :
existse-at: ∃e@i.P[e]
,
es-loc: loc(e)
,
es-E: E
,
event_ordering: EO
,
Id: Id
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
so_apply: x[s]
,
member: t ∈ T
,
set: {x:A| B[x]}
,
function: x:A ⟶ B[x]
,
equal: s = t ∈ T
Definitions unfolded in proof :
existse-at: ∃e@i.P[e]
,
and: P ∧ Q
,
cand: A c∧ B
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
so_lambda: λ2x.t[x]
,
prop: ℙ
,
so_apply: x[s]
,
subtype_rel: A ⊆r B
Latex:
\mforall{}[es:EO]. \mforall{}[i:Id]. \mforall{}[P:\{e:E| loc(e) = i\} {}\mrightarrow{} \mBbbP{}]. (\mexists{}e@i.P[e] \mmember{} \mBbbP{})
Date html generated:
2016_05_16-AM-09_40_40
Last ObjectModification:
2015_12_28-PM-09_41_45
Theory : new!event-ordering
Home
Index