Nuprl Lemma : existse-ge_wf

[es:EO]. ∀[e:E]. ∀[P:{e':E| loc(e') loc(e) ∈ Id}  ⟶ ℙ].  (∃e'≥e.P[e'] ∈ ℙ)


Proof




Definitions occuring in Statement :  existse-ge: e'≥e.P[e'] es-loc: loc(e) es-E: E event_ordering: EO Id: Id uall: [x:A]. B[x] prop: so_apply: x[s] member: t ∈ T set: {x:A| B[x]}  function: x:A ⟶ B[x] equal: t ∈ T
Definitions unfolded in proof :  existse-ge: e'≥e.P[e'] uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] prop: and: P ∧ Q so_apply: x[s] subtype_rel: A ⊆B es-le: e ≤loc e'  or: P ∨ Q es-locl: (e <loc e')

Latex:
\mforall{}[es:EO].  \mforall{}[e:E].  \mforall{}[P:\{e':E|  loc(e')  =  loc(e)\}    {}\mrightarrow{}  \mBbbP{}].    (\mexists{}e'\mgeq{}e.P[e']  \mmember{}  \mBbbP{})



Date html generated: 2016_05_16-AM-09_18_39
Last ObjectModification: 2015_12_28-PM-09_56_00

Theory : new!event-ordering


Home Index