Nuprl Lemma : flow-graph_wf

[T:Type]. ∀[S:Id List]. ∀[F:information-flow(T;S)]. ∀[G:Graph(S)].  (flow-graph(S;T;F;G) ∈ ℙ)


Proof




Definitions occuring in Statement :  flow-graph: flow-graph(S;T;F;G) information-flow: information-flow(T;S) id-graph: Graph(S) Id: Id list: List uall: [x:A]. B[x] prop: member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T flow-graph: flow-graph(S;T;F;G) information-flow: information-flow(T;S) implies:  Q prop: subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s]

Latex:
\mforall{}[T:Type].  \mforall{}[S:Id  List].  \mforall{}[F:information-flow(T;S)].  \mforall{}[G:Graph(S)].    (flow-graph(S;T;F;G)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_16-AM-10_06_17
Last ObjectModification: 2015_12_28-PM-09_27_03

Theory : new!event-ordering


Home Index