Nuprl Lemma : flow-graph_wf
∀[T:Type]. ∀[S:Id List]. ∀[F:information-flow(T;S)]. ∀[G:Graph(S)].  (flow-graph(S;T;F;G) ∈ ℙ)
Proof
Definitions occuring in Statement : 
flow-graph: flow-graph(S;T;F;G)
, 
information-flow: information-flow(T;S)
, 
id-graph: Graph(S)
, 
Id: Id
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
flow-graph: flow-graph(S;T;F;G)
, 
information-flow: information-flow(T;S)
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Latex:
\mforall{}[T:Type].  \mforall{}[S:Id  List].  \mforall{}[F:information-flow(T;S)].  \mforall{}[G:Graph(S)].    (flow-graph(S;T;F;G)  \mmember{}  \mBbbP{})
Date html generated:
2016_05_16-AM-10_06_17
Last ObjectModification:
2015_12_28-PM-09_27_03
Theory : new!event-ordering
Home
Index