Nuprl Lemma : loc-on-path-cons

es:EO. ∀L:E List. ∀e:E. ∀i:Id.  (loc-on-path(es;i;[e L]) ⇐⇒ (loc(e) i ∈ Id) ∨ loc-on-path(es;i;L))


Proof




Definitions occuring in Statement :  loc-on-path: loc-on-path(es;i;L) es-loc: loc(e) es-E: E event_ordering: EO Id: Id cons: [a b] list: List all: x:A. B[x] iff: ⇐⇒ Q or: P ∨ Q equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) member: t ∈ T top: Top so_apply: x[s1;s2;s3] iff: ⇐⇒ Q and: P ∧ Q implies:  Q or: P ∨ Q prop: uall: [x:A]. B[x] guard: {T} rev_implies:  Q loc-on-path: loc-on-path(es;i;L)

Latex:
\mforall{}es:EO.  \mforall{}L:E  List.  \mforall{}e:E.  \mforall{}i:Id.    (loc-on-path(es;i;[e  /  L])  \mLeftarrow{}{}\mRightarrow{}  (loc(e)  =  i)  \mvee{}  loc-on-path(es;i;L))



Date html generated: 2016_05_16-AM-09_53_52
Last ObjectModification: 2015_12_28-PM-09_33_15

Theory : new!event-ordering


Home Index