Nuprl Lemma : st-data_wf

[T:Id ⟶ Type]. ∀[tab:secret-table(T)]. ∀[n:ℕ||tab|| ].  (data(tab;n) ∈ data(T))


Proof




Definitions occuring in Statement :  st-data: data(tab;n) st-length: ||tab||  secret-table: secret-table(T) data: data(T) Id: Id int_seg: {i..j-} uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  st-data: data(tab;n) st-length: ||tab||  secret-table: secret-table(T) uall: [x:A]. B[x] member: t ∈ T pi2: snd(t) pi1: fst(t) all: x:A. B[x] implies:  Q so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B nat:

Latex:
\mforall{}[T:Id  {}\mrightarrow{}  Type].  \mforall{}[tab:secret-table(T)].  \mforall{}[n:\mBbbN{}||tab||  ].    (data(tab;n)  \mmember{}  data(T))



Date html generated: 2016_05_16-AM-10_01_39
Last ObjectModification: 2015_12_28-PM-09_29_41

Theory : new!event-ordering


Home Index