Nuprl Lemma : lg-all_functionality
∀[T:Type]. ∀G:LabeledDAG(T). ∀[P1,P2:T ⟶ ℙ]. ((∀x:T. (P1[x]
⇒ P2[x]))
⇒ {∀x∈G.P1[x]
⇒ ∀x∈G.P2[x]})
Proof
Definitions occuring in Statement :
lg-all: ∀x∈G.P[x]
,
ldag: LabeledDAG(T)
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
guard: {T}
,
so_apply: x[s]
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
function: x:A ⟶ B[x]
,
universe: Type
Definitions unfolded in proof :
guard: {T}
,
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
ldag: LabeledDAG(T)
,
implies: P
⇒ Q
,
lg-all: ∀x∈G.P[x]
,
member: t ∈ T
,
subtype_rel: A ⊆r B
,
nat: ℕ
,
prop: ℙ
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
Latex:
\mforall{}[T:Type]
\mforall{}G:LabeledDAG(T). \mforall{}[P1,P2:T {}\mrightarrow{} \mBbbP{}]. ((\mforall{}x:T. (P1[x] {}\mRightarrow{} P2[x])) {}\mRightarrow{} \{\mforall{}x\mmember{}G.P1[x] {}\mRightarrow{} \mforall{}x\mmember{}G.P2[x]\})
Date html generated:
2016_05_17-AM-10_18_01
Last ObjectModification:
2015_12_29-PM-05_31_07
Theory : process-model
Home
Index