Nuprl Lemma : lg-connected_transitivity
∀[T:Type]. ∀g:LabeledGraph(T). ∀a,b,c:ℕlg-size(g).  (lg-connected(g;a;b) ⇒ lg-connected(g;b;c) ⇒ lg-connected(g;a;c))
Proof
Definitions occuring in Statement : 
lg-connected: lg-connected(g;a;b), 
lg-size: lg-size(g), 
labeled-graph: LabeledGraph(T), 
int_seg: {i..j-}, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
natural_number: $n, 
universe: Type
Definitions unfolded in proof : 
lg-connected: lg-connected(g;a;b), 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
infix_ap: x f y, 
subtype_rel: A ⊆r B, 
nat: ℕ, 
prop: ℙ, 
trans: Trans(T;x,y.E[x; y])
Latex:
\mforall{}[T:Type]
    \mforall{}g:LabeledGraph(T).  \mforall{}a,b,c:\mBbbN{}lg-size(g).
        (lg-connected(g;a;b)  {}\mRightarrow{}  lg-connected(g;b;c)  {}\mRightarrow{}  lg-connected(g;a;c))
Date html generated:
2016_05_17-AM-10_10_17
Last ObjectModification:
2015_12_29-PM-05_32_38
Theory : process-model
Home
Index