Nuprl Lemma : lg-exists_wf
∀[T:Type]. ∀[P:T ⟶ ℙ]. ∀[G:LabeledGraph(T)].  (lg-exists(G;x.P[x]) ∈ ℙ)
Proof
Definitions occuring in Statement : 
lg-exists: lg-exists(G;x.P[x]), 
labeled-graph: LabeledGraph(T), 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
so_apply: x[s], 
member: t ∈ T, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
lg-exists: lg-exists(G;x.P[x]), 
subtype_rel: A ⊆r B, 
nat: ℕ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
prop: ℙ
Latex:
\mforall{}[T:Type].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[G:LabeledGraph(T)].    (lg-exists(G;x.P[x])  \mmember{}  \mBbbP{})
Date html generated:
2016_05_17-AM-10_18_13
Last ObjectModification:
2015_12_29-PM-05_30_57
Theory : process-model
Home
Index