Nuprl Lemma : run-command-node_wf
∀[M:Type ⟶ Type]. ∀[r:pRunType(P.M[P])]. ∀[t,n:ℕ].  (run-command-node(r;t;n) ∈ ℙ)
Proof
Definitions occuring in Statement : 
run-command-node: run-command-node(r;t;n), 
pRunType: pRunType(T.M[T]), 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
so_apply: x[s], 
member: t ∈ T, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
pRunType: pRunType(T.M[T]), 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
run-command-node: run-command-node(r;t;n), 
nat: ℕ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
subtype_rel: A ⊆r B, 
ldag: LabeledDAG(T)
Latex:
\mforall{}[M:Type  {}\mrightarrow{}  Type].  \mforall{}[r:pRunType(P.M[P])].  \mforall{}[t,n:\mBbbN{}].    (run-command-node(r;t;n)  \mmember{}  \mBbbP{})
Date html generated:
2016_05_17-AM-10_55_56
Last ObjectModification:
2015_12_29-PM-05_18_08
Theory : process-model
Home
Index