Nuprl Lemma : run-command-node_wf
∀[M:Type ⟶ Type]. ∀[r:pRunType(P.M[P])]. ∀[t,n:ℕ]. (run-command-node(r;t;n) ∈ ℙ)
Proof
Definitions occuring in Statement :
run-command-node: run-command-node(r;t;n)
,
pRunType: pRunType(T.M[T])
,
nat: ℕ
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
so_apply: x[s]
,
member: t ∈ T
,
function: x:A ⟶ B[x]
,
universe: Type
Definitions unfolded in proof :
pRunType: pRunType(T.M[T])
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
run-command-node: run-command-node(r;t;n)
,
nat: ℕ
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
subtype_rel: A ⊆r B
,
ldag: LabeledDAG(T)
Latex:
\mforall{}[M:Type {}\mrightarrow{} Type]. \mforall{}[r:pRunType(P.M[P])]. \mforall{}[t,n:\mBbbN{}]. (run-command-node(r;t;n) \mmember{} \mBbbP{})
Date html generated:
2016_05_17-AM-10_55_56
Last ObjectModification:
2015_12_29-PM-05_18_08
Theory : process-model
Home
Index