Nuprl Lemma : run-event-state_wf
∀[M:Type ⟶ Type]. ∀[r:fulpRunType(P.M[P])]. ∀[e:runEvents(r)].  (run-event-state(r;e) ∈ Process(P.M[P]) List)
Proof
Definitions occuring in Statement : 
run-event-state: run-event-state(r;e), 
runEvents: runEvents(r), 
fulpRunType: fulpRunType(T.M[T]), 
Process: Process(P.M[P]), 
list: T List, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
member: t ∈ T, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
run-event-state: run-event-state(r;e), 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
fulpRunType: fulpRunType(T.M[T]), 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
System: System(P.M[P]), 
spreadn: spread3, 
component: component(P.M[P]), 
pi1: fst(t), 
prop: ℙ, 
pi2: snd(t), 
subtype_rel: A ⊆r B, 
runEvents: runEvents(r)
Latex:
\mforall{}[M:Type  {}\mrightarrow{}  Type].  \mforall{}[r:fulpRunType(P.M[P])].  \mforall{}[e:runEvents(r)].
    (run-event-state(r;e)  \mmember{}  Process(P.M[P])  List)
Date html generated:
2016_05_17-AM-10_42_27
Last ObjectModification:
2015_12_29-PM-05_24_07
Theory : process-model
Home
Index