Nuprl Lemma : run-info_wf
∀[M:Type ⟶ Type]. ∀[r:pRunType(P.M[P])]. ∀[e:runEvents(r)].  (run-info(r;e) ∈ ℤ × Id × pMsg(P.M[P]))
Proof
Definitions occuring in Statement : 
runEvents: runEvents(r), 
run-info: run-info(r;e), 
pRunType: pRunType(T.M[T]), 
pMsg: pMsg(P.M[P]), 
Id: Id, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
member: t ∈ T, 
function: x:A ⟶ B[x], 
product: x:A × B[x], 
int: ℤ, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
runEvents: runEvents(r), 
run-info: run-info(r;e), 
is-run-event: is-run-event(r;t;x), 
pi1: fst(t), 
pi2: snd(t), 
pRunType: pRunType(T.M[T]), 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
isl: isl(x), 
outl: outl(x), 
band: p ∧b q, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
spreadn: spread3, 
prop: ℙ, 
bfalse: ff, 
assert: ↑b, 
false: False
Latex:
\mforall{}[M:Type  {}\mrightarrow{}  Type].  \mforall{}[r:pRunType(P.M[P])].  \mforall{}[e:runEvents(r)].
    (run-info(r;e)  \mmember{}  \mBbbZ{}  \mtimes{}  Id  \mtimes{}  pMsg(P.M[P]))
Date html generated:
2016_05_17-AM-10_42_08
Last ObjectModification:
2015_12_29-PM-05_24_12
Theory : process-model
Home
Index