Nuprl Lemma : sub-system_transitivity
∀[M:Type ⟶ Type]
  ∀S1,S2,S3:System(P.M[P]).  (sub-system(P.M[P];S1;S2) ⇒ sub-system(P.M[P];S2;S3) ⇒ sub-system(P.M[P];S1;S3))
Proof
Definitions occuring in Statement : 
sub-system: sub-system(P.M[P];S1;S2), 
System: System(P.M[P]), 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
System: System(P.M[P]), 
sub-system: sub-system(P.M[P];S1;S2), 
implies: P ⇒ Q, 
and: P ∧ Q, 
cand: A c∧ B, 
member: t ∈ T, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
ldag: LabeledDAG(T), 
guard: {T}
Latex:
\mforall{}[M:Type  {}\mrightarrow{}  Type]
    \mforall{}S1,S2,S3:System(P.M[P]).
        (sub-system(P.M[P];S1;S2)  {}\mRightarrow{}  sub-system(P.M[P];S2;S3)  {}\mRightarrow{}  sub-system(P.M[P];S1;S3))
Date html generated:
2016_05_17-AM-11_03_44
Last ObjectModification:
2015_12_29-PM-05_17_32
Theory : process-model
Home
Index