Nuprl Lemma : l_tree-definition
∀[L,T,A:Type]. ∀[R:A ─→ l_tree(L;T) ─→ ℙ].
  ((∀val:L. {x:A| R[x;l_tree_leaf(val)]} )
  ⇒ (∀val:T. ∀left_subtree,right_subtree:l_tree(L;T).
        ({x:A| R[x;left_subtree]} 
        ⇒ {x:A| R[x;right_subtree]} 
        ⇒ {x:A| R[x;l_tree_node(val;left_subtree;right_subtree)]} ))
  ⇒ {∀v:l_tree(L;T). {x:A| R[x;v]} })
Proof
Definitions occuring in Statement : 
l_tree_node: l_tree_node(val;left_subtree;right_subtree), 
l_tree_leaf: l_tree_leaf(val), 
l_tree: l_tree(L;T), 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
guard: {T}, 
so_apply: x[s1;s2], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
set: {x:A| B[x]} , 
function: x:A ─→ B[x], 
universe: Type
Lemmas : 
l_tree-induction, 
set_wf, 
l_tree_wf, 
all_wf, 
l_tree_node_wf, 
l_tree_leaf_wf
\mforall{}[L,T,A:Type].  \mforall{}[R:A  {}\mrightarrow{}  l\_tree(L;T)  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}val:L.  \{x:A|  R[x;l\_tree\_leaf(val)]\}  )
    {}\mRightarrow{}  (\mforall{}val:T.  \mforall{}left$_{subtree}$,right$_{subtree}$:l\_tree(L;T\000C).
                (\{x:A|  R[x;left$_{subtree}$]\}  
                {}\mRightarrow{}  \{x:A|  R[x;right$_{subtree}$]\}  
                {}\mRightarrow{}  \{x:A|  R[x;l\_tree\_node(val;left$_{subtree}$;right$_{subtre\000Ce}$)]\}  ))
    {}\mRightarrow{}  \{\mforall{}v:l\_tree(L;T).  \{x:A|  R[x;v]\}  \})
 Date html generated: 
2015_07_17-AM-07_41_40
 Last ObjectModification: 
2015_01_27-AM-09_31_14
Home
Index