Nuprl Lemma : mFOL-sequent-evidence_and
From uniform evidence that hyps ⇒ x and 
uniform evidence that (y ∧ hyps) ⇒ y
we construct uniform evidence that hyps ⇒ x ∧ y⋅
∀hyps:mFOL() List. ∀[x,y:mFOL()].  (mFOL-sequent-evidence(<hyps, x>) ⇒ mFOL-sequent-evidence(<hyps, y>) ⇒ mFOL-sequent\000C-evidence(<hyps, x ∧ y>))
Proof
Definitions occuring in Statement : 
mFOL-sequent-evidence: mFOL-sequent-evidence(s), 
mFOconnect: mFOconnect(knd;left;right), 
mFOL: mFOL(), 
list: T List, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
pair: <a, b>, 
token: "$token"
Lemmas : 
tuple-type_wf, 
map_wf, 
mFOL_wf, 
FOSatWith_wf, 
mFOL-abstract_wf, 
FOAssignment_wf, 
FOStruct_wf, 
mFOL-sequent-evidence_wf, 
list_wf
\mforall{}hyps:mFOL()  List.  \mforall{}[x,y:mFOL()].    (mFOL-sequent-evidence(<hyps,  x>)  {}\mRightarrow{}  mFOL-sequent-evidence(<hyps,\000C  y>)  {}\mRightarrow{}  mFOL-sequent-evidence(<hyps,  x  \mwedge{}  y>))
Date html generated:
2015_07_17-AM-07_56_41
Last ObjectModification:
2015_01_27-AM-10_05_24
Home
Index