Nuprl Lemma : Game-minus-minus

G:Game. -(-(G)) ≡ G


Proof




Definitions occuring in Statement :  eq-Game: G ≡ H Game-minus: -(G) Game: Game all: x:A. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] so_lambda: λ2x.t[x] member: t ∈ T prop: so_apply: x[s] implies:  Q all: x:A. B[x] or: P ∨ Q guard: {T} eq-Game: G ≡ H and: P ∧ Q Game-minus: -(G) right-move: right-move(g;x) left-move: left-move(g;x) left-indices: left-indices(g) right-indices: right-indices(g) mkGame: {mkGame(f[a] with a:L g[b] with b:R} Wsup: Wsup(a;b) pi1: fst(t) pi2: snd(t) cand: c∧ B exists: x:A. B[x] right-option: right-option{i:l}(g;m) left-option: left-option{i:l}(g;m)
Lemmas referenced :  Game-induction eq-Game_wf Game-minus_wf Game_wf left-option_wf right-option_wf left-move_wf right-indices_wf right-move_wf left-indices_wf eq-Game_inversion
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin sqequalRule lambdaEquality_alt cumulativity hypothesisEquality hypothesis universeIsType independent_functionElimination lambdaFormation_alt functionIsType inhabitedIsType unionIsType independent_pairFormation dependent_pairFormation_alt dependent_functionElimination inlFormation_alt equalityIstype productIsType inrFormation_alt because_Cache

Latex:
\mforall{}G:Game.  -(-(G))  \mequiv{}  G



Date html generated: 2019_10_31-AM-06_35_13
Last ObjectModification: 2019_09_12-PM-01_28_11

Theory : Numbers!and!Games


Home Index