Nuprl Lemma : existssetmem-implies
∀A:coSet{i:l}. ∀[P:{a:coSet{i:l}| (a ∈ A)}  ⟶ ℙ]. (∃a∈A.P[a] ⇒ (∃a:coSet{i:l}. ((a ∈ A) ∧ P[a])))
Proof
Definitions occuring in Statement : 
existssetmem: ∃a∈A.P[a], 
setmem: (x ∈ s), 
coSet: coSet{i:l}, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
so_apply: x[s], 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
implies: P ⇒ Q, 
and: P ∧ Q, 
set: {x:A| B[x]} , 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
prop: ℙ, 
mk-coset: mk-coset(T;f), 
cand: A c∧ B, 
and: P ∧ Q, 
exists: ∃x:A. B[x], 
pi2: snd(t), 
pi1: fst(t), 
set-dom: set-dom(s), 
set-item: set-item(s;x), 
existssetmem: ∃a∈A.P[a], 
subtype_rel: A ⊆r B, 
member: t ∈ T, 
implies: P ⇒ Q, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x]
Lemmas referenced : 
coSet_wf, 
existssetmem_wf, 
subtype_rel_self, 
mk-coset_wf, 
setmem_wf, 
setmem-coset, 
coSet_subtype, 
subtype_coSet
Rules used in proof : 
functionEquality, 
cumulativity, 
setEquality, 
lambdaEquality, 
universeEquality, 
instantiate, 
dependent_set_memberEquality, 
isectElimination, 
productEquality, 
independent_pairFormation, 
dependent_functionElimination, 
dependent_pairFormation, 
thin, 
productElimination, 
sqequalRule, 
sqequalHypSubstitution, 
applyEquality, 
hypothesisEquality, 
hypothesis, 
extract_by_obid, 
introduction, 
cut, 
hypothesis_subsumption, 
isect_memberFormation, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}A:coSet\{i:l\}.  \mforall{}[P:\{a:coSet\{i:l\}|  (a  \mmember{}  A)\}    {}\mrightarrow{}  \mBbbP{}].  (\mexists{}a\mmember{}A.P[a]  {}\mRightarrow{}  (\mexists{}a:coSet\{i:l\}.  ((a  \mmember{}  A)  \mwedge{}  P[a])))
Date html generated:
2018_07_29-AM-10_00_48
Last ObjectModification:
2018_07_18-PM-04_50_07
Theory : constructive!set!theory
Home
Index