Nuprl Lemma : itersetfun_functionality_subset
∀G:Set{i:l} ⟶ Set{i:l}
  ((∀a,b:Set{i:l}.  ((a ⊆ b) ⇒ (G[a] ⊆ G[b])))
  ⇒ (∀b,a:Set{i:l}.  ((a ⊆ b) ⇒ (itersetfun(x.G[x];a) ⊆ itersetfun(x.G[x];b)))))
Proof
Definitions occuring in Statement : 
itersetfun: itersetfun(s.G[s];a), 
setsubset: (a ⊆ b), 
Set: Set{i:l}, 
so_apply: x[s], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
pi2: snd(t), 
set-item: set-item(s;x), 
Wsup: Wsup(a;b), 
mk-set: f"(T), 
setunionfun:  ⋃x∈s.f[x], 
guard: {T}, 
top: Top, 
exists: ∃x:A. B[x], 
rev_implies: P ⇐ Q, 
and: P ∧ Q, 
iff: P ⇐⇒ Q, 
subtype_rel: A ⊆r B, 
itersetfun: itersetfun(s.G[s];a), 
so_apply: x[s], 
prop: ℙ, 
member: t ∈ T, 
so_lambda: λ2x.t[x], 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
all: ∀x:A. B[x]
Lemmas referenced : 
set-item_wf, 
seteq_wf, 
set-dom_wf, 
setmem-iff, 
seteq-iff, 
setmem-mk-set-sq, 
setmem-unionfun-implies, 
setsubset-iff, 
mk-set_wf, 
set-subtype-coSet, 
setmem_wf, 
setunionfun_wf, 
itersetfun_wf, 
setsubset_wf, 
Set_wf, 
all_wf, 
set-induction
Rules used in proof : 
spreadEquality, 
dependent_pairEquality, 
dependent_pairFormation, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
universeEquality, 
productElimination, 
because_Cache, 
setEquality, 
rename, 
setElimination, 
dependent_functionElimination, 
independent_functionElimination, 
applyEquality, 
hypothesisEquality, 
functionEquality, 
cumulativity, 
hypothesis, 
instantiate, 
lambdaEquality, 
sqequalRule, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}G:Set\{i:l\}  {}\mrightarrow{}  Set\{i:l\}
    ((\mforall{}a,b:Set\{i:l\}.    ((a  \msubseteq{}  b)  {}\mRightarrow{}  (G[a]  \msubseteq{}  G[b])))
    {}\mRightarrow{}  (\mforall{}b,a:Set\{i:l\}.    ((a  \msubseteq{}  b)  {}\mRightarrow{}  (itersetfun(x.G[x];a)  \msubseteq{}  itersetfun(x.G[x];b)))))
Date html generated:
2018_07_29-AM-10_05_59
Last ObjectModification:
2018_07_11-PM-10_07_23
Theory : constructive!set!theory
Home
Index