Nuprl Lemma : mkset_wf

[T:Type]. ∀[f:T ⟶ Set{i:l}].  ({f[t] t ∈ T} ∈ Set{i:l})


Proof




Definitions occuring in Statement :  mkset: {f[t] t ∈ T} Set: Set{i:l} uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T mkset: {f[t] t ∈ T} Set: Set{i:l} Wsup: Wsup(a;b) so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  Wsup_wf Set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin instantiate extract_by_obid sqequalHypSubstitution isectElimination universeEquality sqequalRule lambdaEquality cumulativity hypothesisEquality applyEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry functionEquality isect_memberEquality because_Cache

Latex:
\mforall{}[T:Type].  \mforall{}[f:T  {}\mrightarrow{}  Set\{i:l\}].    (\{f[t]  |  t  \mmember{}  T\}  \mmember{}  Set\{i:l\})



Date html generated: 2018_05_22-PM-09_47_40
Last ObjectModification: 2018_05_16-PM-01_31_10

Theory : constructive!set!theory


Home Index