Nuprl Lemma : mkset_wf
∀[T:Type]. ∀[f:T ⟶ Set{i:l}].  ({f[t] | t ∈ T} ∈ Set{i:l})
Proof
Definitions occuring in Statement : 
mkset: {f[t] | t ∈ T}
, 
Set: Set{i:l}
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
mkset: {f[t] | t ∈ T}
, 
Set: Set{i:l}
, 
Wsup: Wsup(a;b)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
Wsup_wf, 
Set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
instantiate, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
universeEquality, 
sqequalRule, 
lambdaEquality, 
cumulativity, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[T:Type].  \mforall{}[f:T  {}\mrightarrow{}  Set\{i:l\}].    (\{f[t]  |  t  \mmember{}  T\}  \mmember{}  Set\{i:l\})
Date html generated:
2018_05_22-PM-09_47_40
Last ObjectModification:
2018_05_16-PM-01_31_10
Theory : constructive!set!theory
Home
Index