Nuprl Lemma : onto-map_wf
∀[A,B:coSet{i:l}]. ∀[R:{u:coSet{i:l}| (u ∈ A)}  ⟶ {v:coSet{i:l}| (v ∈ B)}  ⟶ ℙ'].  (R:(A ─>> B) ∈ ℙ')
Proof
Definitions occuring in Statement : 
onto-map: R:(A ─>> B), 
setmem: (x ∈ s), 
coSet: coSet{i:l}, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
member: t ∈ T, 
set: {x:A| B[x]} , 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
so_apply: x[s], 
subtype_rel: A ⊆r B, 
and: P ∧ Q, 
prop: ℙ, 
implies: P ⇒ Q, 
so_lambda: λ2x.t[x], 
onto-map: R:(A ─>> B), 
member: t ∈ T, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
subtype_rel_self, 
exists_wf, 
setmem_wf, 
coSet_wf, 
all_wf
Rules used in proof : 
because_Cache, 
isect_memberEquality, 
setEquality, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
universeEquality, 
dependent_set_memberEquality, 
applyEquality, 
productEquality, 
hypothesisEquality, 
cumulativity, 
functionEquality, 
lambdaEquality, 
hypothesis, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
instantiate, 
thin, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[A,B:coSet\{i:l\}].  \mforall{}[R:\{u:coSet\{i:l\}|  (u  \mmember{}  A)\}    {}\mrightarrow{}  \{v:coSet\{i:l\}|  (v  \mmember{}  B)\}    {}\mrightarrow{}  \mBbbP{}'].
    (R:(A  {}>>  B)  \mmember{}  \mBbbP{}')
Date html generated:
2018_07_29-AM-10_06_24
Last ObjectModification:
2018_07_20-PM-00_53_57
Theory : constructive!set!theory
Home
Index